Лекция 1. Введение

Криптография как учение об искусстве тайнописи возникла в древние времена. Потребность шифровать и передавать шифрованные сообщения возникла очень давно. Известны специальные шифровальные устройства V-VI веков до нашей эры, а именно две специальные палки одинаковой длины и диаметра. Эти палки назывались *скиталами*. Когда один из двух союзников должен был передать другому некоторое сообщение, то на скиталу наматывалась длинная полоска папируса и сообщение писалось вдоль скиталы. Эта полоска передавалась другому союзнику и он мог ее прочесть, только намотав на такую же скиталу.

В настоящее время *криптология* — это наука, содержащая две взаимосвязанные части, а именно, криптографию, изучающую различные методы шифрования текстов и их расшифрования, и *криптоанализ*, изучающий методы, позволяющие расшифровать перехваченное сообщение, не зная самого ключа для расшифрования.

Позднее шифры усложнялись, совершенствовались и применялись вплоть до 70-х годов XX века в основном в военных и политических кругах для обеспечения конфиденциальности информации. Однако с развитием предпринимательской деятельности частных фирм, появлением компьютерных сетей, в особенности, Интернета, появилось много новых проблем защиты информации. В банковской сфере важной задачей является задача обеспечения целостности информации, т.е. ее поступления в неискаженном виде, а также гарантии поступления из известного задача аутентификации (проверка источника, подтверждения авторства). В настоящее время в деловых кругах широко используется электронная подпись. Еще одна задача криптографии связанная с появлением электронных денег – это обеспечение неотслеживаемости расходов клиента в электронных деньгах, т.е. свойство которым обладают обычные бумажные деньги. Задача была поставлена в работах Шаума в 80-х годах XX века и какое-то время оставалась не замеченной. Речь идет о правах клиента свободно распоряжаться своими деньгами. С другой стороны, полная неотслеживаемость вредна и может способствовать росту организованной преступности.

Современная криптография существенно использует математические методы и понятия, в частности, такие разделы как 1) теорию конечных колец и и полей; 2) теорию чисел; 3) матрицы; 4) большие простые числа; 5) теорию вероятности и т.д.

Тема 1. Сравнения, кольца вычетов, расширенный алгоритм Евклида

Определение 1. Два целых числа a и b называются cpавнимыми $no\ modyno\ m$, если их разность делится на m. Число m называется $modynem\ cpaвнения$, а факт сравнимости чисел записывается как $a\equiv b \ mod\ m$.

Если m — модуль сравнения, то при делении произвольного целого числа на m с остатком можно получить один из m различных остатков, а именно: $0,1,2,\ldots,m-1$. Таким образом, любое целое число a можно представить в виде

$$a = mq + r, (1)$$

где

$$r \in \{0, 1, 2, \dots, m - 1\} \tag{2}$$

– $ocmamo\kappa$ от деления α на m, а q – henonhoe частное от деления.

Таким образом, все целые числа можно распределить по m классам:

$$\overline{0} = \{lm\}, \ \overline{1} = \{1 + lm\}, \dots, \ \overline{m-1} = \{m-1 + lm\},$$
 (3)

где $l \in \mathbb{Z}$, т.е. это произвольное целое число.

Определение 2. Множества $\overline{0}$, $\overline{1}$, ..., $\overline{m-1}$ называются классами вычетов по модулю m.

Над классами вычетов можно производить обычные операции сложения и умножения:

$$\overline{r_1} + \overline{r_2} = \overline{r_1} + \overline{r_2}; \quad \overline{r_1} \cdot \overline{r_2} = \overline{r_1} \cdot \overline{r_2}$$
 (4)

Определение 3. Множество классов вычетов (2) по модулю m с операциями сложения и умножения, определенные формулами (3), называется *кольцом вычетов по модулю* m и обозначается \mathbb{Z}_m .

Как правило, элементы кольца вычетов мы будем обозначать обычными числами $\{0,1,2,\ldots,m-1\}$, опуская черту сверху.

Пример 1. Постройте таблицы сложения и умножения в кольце \mathbb{Z}_4 . *Решение*. $\mathbb{Z}_4 = \{0,1,2,3\}$.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

•	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Важную роль в криптографии играет понятие обратимости элемента.

Определение 4. Элемент a^{-1} в кольце вычетов называется обратным к элементу a, если их произведение равно единичному вычету 1. Элемент a называется обратимым, если он имеет обратный элемент.

Пример 2. В кольце \mathbb{Z}_4 укажите все обратимые и все необратимые элементы.

Решение. Непосредственно из таблицы умножения можно усмотреть, что множество обратимых элементов есть $\{1,3\}$: $1^2=1,\ 3^2=1.$ Элементы 0 и 2 обратимыми не являются. Более того, $2^2=0.$

Легко видеть, что умножение в кольце вычетов ассоциативно и коммутативно и существует единица 1 относительно умножения. Классы вычетов будем обозначать по их представителям, т.е. натуральным числам $0,1,\ldots,m-1$. Кольцо вычетов по модулю m обозначается Z_m .

Замечание 1. Кольца вычетов дают основные примеры конечных колец и полей, которые играют важную роль в приложениях алгебры. Свойство обратимости является существенным при решении различных задач в криптографии и теории кодирования. Этот факт важен, так как здесь нужно иметь процессы, которые идут в противоположных направлениях: шифрование и дешифрование, кодирование и декодирование.

Для любых двух целых чисел a и $b \neq 0$ возможно деление c остатком, т.е. представление числа a в виде:

$$a = bq + r, (5)$$

где

$$0 \le r < |b|. \tag{6}$$

Определение 6. Наибольшим общим делителем (НОД) двух целых чисел a и $b \neq 0$ называется положительное число $d \neq 0$, которое делится на любой общий делитель c чисел a и b, т.е. из того, что $a = a_1c$ и $b = b_1c$, следует, что d = qc.

Для нахождения наибольшего общего делителя (НОД) двух целых чисел служит алгоритм Евклида, который состоит в последовательном применении деления с остатком, а именно:

$$r_0 = a, r_1 = b, r_0 = r_1 q_1 + r_2, r_1 = r_2 q_2 + r_3, ..., r_{n-2} = r_{n-1} q_{n-1} + r_n,$$

$$r_{n-1} = r_n q_n.$$
(7)

Наибольший общий делитель целых чисел a и $b \neq 0$ далее будем обозначать (a,b).

Теорема 1 (теорема Евклида). Наибольший общий делитель (a,b) двух целых чисел a и $b \neq 0$ равен последнему ненулевому остатку в цепочке (7).

Доказательство. Доказательство основано на простом наблюдении, что для равенства (5) верно (a,b)=(b,r), что проверяется непосредственно. В самом деле, если d – общий делитель чисел a и b, то $a=a_1d$, $b=b_1d$. Следовательно, из равенства (5) имеем, что $r=a-bq=d(a_1-b_1q)$, т.е. r делится на d. Поэтому, d есть делитель (b,r).

Обратно, таким же образом всякий общий делитель b и r, есть делитель (a,b). Следовательно, для цепочки делений (7) имеем равенства

$$(r_0, r_1) = (r_1, r_2) = \dots = (r_{n-1}, r_n) = r_n.$$
 (8)

С другой стороны, в силу неравенства (6) в цепочке (7) справедливы неравенства

$$|r_1| > r_2 > \dots > r_{n-1} > r_n \ge 0.$$
 (9)

Следовательно, процесс деления с остатком закончится на конечном шаге.

Следствие. В алгоритме Евклида для нахождения наибольшего общего делителя ненулевых целых чисел a и b вычисления производятся по формулам

$$r_0 = a, r_1 = b, r_k = r_{k-2} - r_{k-1}q_{k-1} (2 \le k \le n),$$
 (10)

причем верны неравенства (9).

Теорема 2 (о линейном представлении НОД). Если d = (a,b), то существуют целые числа u и v, для которых верно равенство

$$d = ua + vb. (11)$$

Множители u и v в представлении (11) называются *множителями* Безу.

В качестве следствия из доказательства теоремы имеем

Следствие 1. Наибольший общий делитель ненулевых целых чисел a u b, a также множители Безу u u v b формуле (11) можно найти c помощью расширенного алгоритма Евклида, b котором вычисления производятся по формулам (10) u формулам

$$x_0 = 1, x_1 = 0, y_0 = 0, y_1 = 1,$$

 $x_k = x_{k-2} - x_{k-1}q_{k-1}, y_k = y_{k-2} - y_{k-1}q_{k-1} (2 \le k \le n).$ (12)

Вычисления по формулам (10) и (12) производятся вплоть до получения первого нулевого остатка. Если $r_{n+1}=0$, но $r_n\neq 0$, то вычисления заканчиваются и полагаем $d=r_n$, $u=x_n$, $v=y_n$.

Следствие 2. Числа a и b взаимно просты тогда и только тогда, когда

$$ua + vb = 1 \tag{13}$$

для некоторых целых чисел u и v .

Теорема 3 (критерий обратимости элемента кольца вычетов). Элемент b кольца вычетов по модулю m обратим тогда и только тогда, когда он взаимно прост c модулем m, т.е. наибольший общий делитель чисел b и m равен 1, т.е.

$$(b,m)=1. (14)$$

Доказательство теоремы 3. Пусть m натуральное число и b – целое число такое, что $0 < b \le m-1$ и (b,m)=1. В силу следствия 2 из теоремы 2 равенство (17) при a=m выполняется для некоторых

целых u и v. Тогда um=1-vb, т.е. $vb\equiv 1 \operatorname{mod} m$. Следовательно, $b^{-1}\operatorname{mod} m\equiv v$.

Обратно, если элемент b имеет обратный v по модулю m, то $vb\equiv 1\, \mathrm{mod}\, m$, т.е. vb-1=-um для некоторого целого u. Отсюда получаем справедливость равенства vb+um=1. Теорема доказана.

Определение 7. Кольцо вычетов называется *полем*, если любой ненулевой его элемент имеет обратный.

Следствие. Кольцо вычетов Z_m является полем в том и только том случае, если модуль m есть простое число.

Для практического нахождения решения уравнения (11) и, в частности, (13) можно использовать так называемый расширенный алгоритм Евклида, который описан в следствии 1 из теоремы 2.

Способ нахождения обратного элемента по модулю m описывается перед задачей 2 ниже.

Примеры решения задач.

Задача 1. Найдите наибольший общий делитель (a,b) и множители Безу u,v, удовлетворяющие равенству (11) для чисел 851 и 667.

Решение. Положим

$$r_0=851,\ r_1=667,\ x_0=1,\ y_0=0,\ r_0=ax_0+by_0,\ x_1=0,\ y_1=1,$$
 Решение задачи с помощью расширенного алгоритма Евклида может быть достаточно коротко записано в виде следующей таблицы:

i	0	1	2	3	4	5	6	7
r_i	851	667	184	115	69	46	23	0
q_{i}	_	1	3	1	1	1	2	
X_i	1	0	1	-3	4	-7	11	
y_i	0	1	-1	4	-5	9	-14	

На каждом шаге сначала подбирается неполное частное q_{k-1} как наибольшее целое число, удовлетворяющее неравенству $r_{k-2}-r_{k-1}q_{k-1}\geq 0$. Затем в таблице производятся вычисления по формулам (12) и (13) вплоть до получения в строке r_i нулевого остатка.

Проверка: $851 \cdot 11 + 667 \cdot (-14) = 9361 - 9338 = 23$.

Ответ: d = 23, u = 11, v = -14.

Расширенный алгоритм Евклида позволяет вычислять обратные элементы в кольцах вычетов. Для этого следует применить расширенный алгоритм Евклида для нахождения u и v в представлении (11), взяв в качестве первого числа a модуль m, т.е. для представления

$$mu + bv = 1 \tag{14'}$$

Тогда при условии, что 0 < b < m, в качестве обратного элемента элементу b по модулю m можно взять элемент v.

Задача 2. Найдите обратный элемент a^{-1} для a=17 по модулю m=91.

Решение. Заметим, что (17,91)=1. Следовательно, по теореме 3 обратный 17^{-1} по модулю m=91 существует. Для его нахождения применим расширенный алгоритм Евклида, а именно найдем числа u и v, удовлетворяющие равенству 1=mu+av, т.е. 1=17u+91v. Положим $r_0=91$, $r_1=17$, $x_0=1$, $y_0=0$, $x_1=0$, $y_1=1$, Дальнейшие вычисления запишем, как в примере 5, в виде таблицы.

Ι	0	1	2	3	4	5
r_i	91	17	6	5	1	0
q_{i}	_	5	2	1	5	
X_i	1	0	1	-2	3	
y_i	0	1	-5	11	-16	

Проверка:

$$91 \cdot 3 + 17 \cdot (-16) = 1$$
.

Теперь

 $17^{-1} \mod 91 \equiv -16 \equiv 75 \mod 91$.

Omeem: $17^{-1} \mod 91 \equiv 75$.

Замечание 2. Этот алгоритм применим при условии, что элемент a < m. В противном случае, следует либо привести элемент a по модулю m к такому случаю, либо понять, что иначе в качестве a^{-1} следует брать не v, а u.

Дополнительные задачи для самостоятельного решения

- 1. Найдите наибольший общий делитель d двух целых чисел, а также множители Безу u и v в их линейном представлении (8): а) 217 и 413; б) 4214 и 1176; в) 3751 и 1023; г) 5529 и 4559.
- **2.** Определите, являются ли следующие пары целых чисел взаимно простыми a) 1722 и 1355; б) 2356 и 1519.
- 3. а) Постройте таблицы сложения и умножения для колец вычетов Z_5 , Z_6 и Z_8 ; б) укажите группы U_m обратимых элементов этих колец; в) укажите множества $Div(Z_m)$ делителей нуля в них.
- 4. Решите сравнения в кольцах вычетов:
 - a) $x^2 \equiv 5 \mod 11$; 6) $x^2 \equiv 10 \mod 13$; B) $x^2 \equiv 11 \mod 14$;
 - г) $x^2 \equiv 16 \mod 21$; д) $x^2 \equiv 1 \mod 8$.
- **5.** С помощью расширенного алгоритма Евклида найдите обратный элемент a^{-1} по модулю m: a) a=19, m=93; б) a=31, m=73; в) a=181, m=101; г) a=305, m=107; д) a=653, m=309.
- **6.** Укажите все обратимые элементы в кольцах вычетов а) Z_6 , б) Z_8 , в) Z_{12} , г) Z_{15} , д) Z_{11} , а также число обратимых элементов в них.
- 7*. Определите, какие из следующих колец вычетов являются полями:

$$Z_{29}, Z_{101}, Z_{187}, Z_{203}, Z_{317}, Z_{541}, Z_{667}$$
?

Ответы

1. a) d=7, u=10, v=-19; б) d=98, u=-5, v=18; в) d=341, u=-1, v=4; г) d=97, u=-14, v=17. 2. a) взаимно простые; б) не взаимно простые, так как d=31.

- **3.** $U_5 = \{1,2,3,4\}, \ U_6 = \{1,5\}, \ U_8 = \{1,3,5,7\}.$ **4.** a) $\{4,7\};$ б) $\{6,7\};$ в) $\{5,9\};$ г) $\{4,10,11,17\};$ д) $\{1,3,5,7\}.$
- 5. a) $19^{-1} \operatorname{mod} 93 \equiv 49$; б) $31^{-1} \operatorname{mod} 73 \equiv 33$; в) $181^{-1} \operatorname{mod} 101 \equiv 80^{-1} \operatorname{mod} 101 \equiv 24$; г) $305^{-1} \operatorname{mod} 107 \equiv 91^{-1} \operatorname{mod} 107 \equiv 20$; д) $653^{-1} \operatorname{mod} 309 \equiv 35^{-1} \operatorname{mod} 309 \equiv 53$. 6. а) $U_6 = \{1,5\}$, $|U_6| = 2$; б) $U_8 = \{1,3,5,7\}$, $|U_8| = 4$; в) $U_{12} = \{1,5,7,11\}$, $|U_{12}| = 4$; г) $U_{15} = \{1,2,4,7,8,11,13,14\}$, $|U_{15}| = 8$; д) $U_{11} = \{1,2,3,4,5,6,7,8,9,10\}$, $|U_{11}| = 10$. 7*. Полями являются \mathbb{Z}_{29} , \mathbb{Z}_{101} , \mathbb{Z}_{317} , \mathbb{Z}_{541} .

10.09.2014

Лектор д.ф.-м.н., профессор

А.В. Тищенко